510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY DEVICE ONLY TEMPLATE

A. 510(k) Number:

K031898

B. Analyte:

Hemoglobin

C. Type of Test:

Quantitative, Photometric Measurement

D. Applicant:

EKF Diagnostic

E. Proprietary and Established Names:

Hemo_Control Hemoglobin Measurement System

F. Regulatory Information:

1. Regulation section:

21CFR 864.5620

2. Classification:

Class II

3. Product Code:

GKR

4. Panel:

Hematology (81)

G. Intended Use:

1. Indication(s) for use:

The Hemo_Control is indicated for the quantitative determination of hemoglobin in arterial, venous, and capillary whole blood in adults, infants, and children in a professional point-of-care setting.

- 2. Special condition for use statement(s):
- 3. Special instrument Requirements:

H. Device Description:

The Hemo_Control system consists of a photometer and individual single-use microcuvettes filled with reagents.

I. Substantial Equivalence Information:

1. Predicate device name(s):

HemoCue B-Hemoglobin System

Careside Hemoglobin

2. Predicate K number(s):

K973161

K001462

3. Comparison with predicate:

Similarities					
Item	Device	Predicate 1	Predicate 2		
Intended use	Quantitative determination of	Same	Same		
	hemoglobin				
Sample	Venous, capillary, or	Same	Same		
requirements	arterial blood				
Methodology	Hem-Azide	Hgb- Same	Hgb- none		
	methemoglobin	Hct-none	Hct -same		
	Hct-Estimation from				
	hemoglobin				
Differences					
Item	Device	Predicate 1			
Data Handling	Time/Date Logging	Some models			
Features	Data Storage Capability	Some models			

J. Standard/Guidance Document Referenced (if applicable):

EN 60601-1 (03/96) Medical Electrical Equipment Part 1. General Requirements for Safety

EN 60601-1-2 (09/94) Medical Electrical Equipment Collateral Standard. Electromagnetic Compatibility Requirements & Tests

H15-A3 Reference and Selected Procedures for the Quantitative Determination of Hemoglobin in Blood; Approved Standard-Third Edition, NCCLS

AAMI/ISO 14971 Medical Devices: Application of Risk Management to Medical Devices

93/42/EEC EU Law for Medical Products, device according to class IIa

HHS (FDA) 97-4224 In Vitro Diagnostic Devices: Guidance for the Preparation of 510(k) Submissions, January 1997

Guidance for FDA Staff – Regulating In Vitro Diagnostic Device (IVD) Studies, December 17, 1999

FDA Guidance Document-Reviewer Guidance for Premarket Notification Submissions, Portions applicable to Electromagnetic compatibility, Nov. 1993 Guidance for Industry: Acceptance of Foreign Clinical Studies, March 2001 Guidance for FDA Staff: Regulation of In Vitro Diagnostic Device Studies, Dec 17, 1999

K. Test Principle:

The device uses an azide methemoglobin method to measure hemoglobin.

A small amount of blood is loaded into the microcuvette via capillary action. The cuvette is then inserted into the Hemo_Control photometer where the color produced by the chemical reaction in the cuvette is measured. Results are displayed by LED readout.

L. Performance Characteristics (if/when applicable):

- 1. Analytical performance:
 - a. Precision/Reproducibility:

	With-in	Total	Single Observation
	Run	(CV)	20 days
	(CV)		(CV)
Hemoglobin/Low	0.8%	1.0%	0.9%
(107 g/L)			
Hemoglobin/Normal	0.6%	1.0%	0.8%
(129 g/L)			
Hemoglobin/High	0.6%	1.1%	1.0%
(173 g/L)			

b. Linearity/assay reportable range: 0-25.6 g/dL

- c. Traceability (controls, calibrators, or method):
 Device calibrated against NCCLS reference method
- d. Detection limit:
- e. Analytical specificity:
- f. Assay cut-off:

2. Comparison studies:

a. Method comparison with predicate device:

Comparison to NCCLS Reference Method: y=1.0064X +0.0234, r=0.0076, n=174

Comparison to predicate (HemoCue) y=1.0005x-0.2334, r=0.9962, n=286

Comparison of Hemo_Control Cuvettes in HemoCue to predicate (HemoCue)

b. Matrix comparison:

Capillary Samples, 4 sites:

y=0.96x + 0.3742, r=0.8256, n=275,

Arterial Samples, 1 site:

$$y = 0.9868x - 0.0285$$
, $r = 0.998$, $n = 10$

3. Clinical studies:

- a. Clinical sensitivity:
- b. Clinical specificity:
- c. Other clinical supportive data (when a and b is not applicable):

4. Clinical cut-off:

5. Expected values/Reference range:

Based on literature references

Women: 12.0 – 16.0 g/dl Men: 13.0 – 17.5 g/dl

Children, depending on age: 9.0 -24 g/dl

M. Conclusion:

Performance data has demonstrated that this device is substantially equivalent to a legally marketed device.